The picasso Package for High Dimensional Regularized Sparse Learning in R

نویسندگان

  • X. Li
  • T. Zhao
چکیده

We introduce an R package named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (Sparse Linear Regression, Sparse Logistic Regression and Sparse Poisson Regression), combined with efficient active set selection strategies. Besides, the package allows users to choose different sparsityinducing regularizers, including the convex `1, nonvoncex MCP and SCAD regularizers. The package is coded in C and can scale up to large problems efficiently with the memory optimized using sparse matrix output.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The picasso Package for Nonconvex Regularized M-estimation in High Dimensions in R

We describe an R package named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (Sparse Linear Regression, Sparse Logistic Regression and Sparse Column Inverse Operator), combined with distinct active set identification schemes (truncated cyclic, greedy, randomized and proximal gradient selection). Besides, the package p...

متن کامل

Picasso: A Sparse Learning Library for High Dimensional Data Analysis in R and Python

We describe a new library named picasso, which implements a unified framework of pathwise coordinate optimization for a variety of sparse learning problems (e.g., sparse linear regression, sparse logistic regression, sparse Poisson regression and sparse square root loss linear regression), combined with efficient active set selection strategies. Besides, the library allows users to choose diffe...

متن کامل

Face Recognition using an Affine Sparse Coding approach

Sparse coding is an unsupervised method which learns a set of over-complete bases to represent data such as image and video. Sparse coding has increasing attraction for image classification applications in recent years. But in the cases where we have some similar images from different classes, such as face recognition applications, different images may be classified into the same class, and hen...

متن کامل

Mammalian Eye Gene Expression Using Support Vector Regression to Evaluate a Strategy for Detecting Human Eye Disease

Background and purpose: Machine learning is a class of modern and strong tools that can solve many important problems that nowadays humans may be faced with. Support vector regression (SVR) is a way to build a regression model which is an incredible member of the machine learning family. SVR has been proven to be an effective tool in real-value function estimation. As a supervised-learning appr...

متن کامل

Learning Large-Scale Bayesian Networks with the sparsebn Package

Learning graphical models from data is an important problem with wide applications, ranging from genomics to the social sciences. Nowadays datasets typically have upwards of thousands—sometimes tens or hundreds of thousands—of variables and far fewer samples. To meet this challenge, we develop a new R package called sparsebn for learning the structure of large, sparse graphical models with a fo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017